8
1
29/08/2000 14:46
CONFIDENTIAL

Question-Answering at MSR Cambridge

David Elworthy

Microsoft Research Limited
September 2000 (first draft)

5 October 2000 (typo corrections, official TREC-9 performance figures)

1 Introduction

Question-answering is one of the current hot research areas in the information retrieval and natural language processing communities. The immediate impetus from this has come from a recognition that information-seeking users do not always want a whole document, but want to be able to ask a question and get a response which answers it with no superfluous information. This task is poorly supported both in research systems and in commercial products. The research field has been dominated by TREC-style ad-hoc querying, in which full documents are retrieved in response to statements of information need, with the intention that the document is (in some sense) about the topic of the query. In commercial systems such as web search engines and on-line help systems, the results again tend to be complete documents such as web pages or sections of on-line documentation. Even in the cases where there the system apparently allows the user to ask questions, the underlying processing is that of document retrieval. Even systems which appear to use question-answering often do not really do so below the surface. AskJeeves, one of the best known systems, tries to fit the question to one or more templates, which then produce specialised web queries. On-line help may in some cases attempt to analyse the question, but the results are again existing sections of the documentation which match a template.

The goal of true question-answering is to deliver a small amount of information which meets the users requirements as concisely and accurately as possible. Potentially, this could involve creating a result which did not exist prior to the questions, for example by combining information from different documents, or drawing on information which is not encoded as documents. On this view, the documents provide a source which can be mined for information by the question-answering system, and are only ever seen by users if they change their task from simply obtaining an answer.

The recent rise of interest in question-answering in the NL/IR research communities has been focussed on a simpler problem: questions with short factual answers which can be found in a single document. The immediate impetus for this has come from the Text Retrieval Conference (TREC), an annual comparative evaluation of information retrieval systems. In the question-answering task of TREC, a set of questions is issued, and each participant uses their system to extract answers from a given document collection. The results are then manually assessed for correctness and a numerical measure of system performance is calculated. The question-answering task was first run in TREC-8, in 1999. In this document, we will describe Microsoft Research Cambridge’s entry in the TREC-9 (2000) question-answering task. The technique used was designed to build on the strengths of Microsoft’s broad coverage natural language system, NLPWin. The original goal was to build a system which could use constrained reasoning on logical forms. In the end, the timing of the TREC-9 exercise limited the amount of work which could be done on the system, and the results were a little disappointing. However, there are many useful lessons for future work.

In the following section, we briefly survey some previous work in the field, and look at the current interest in the TREC and NLP communities. We also discuss evaluation. The goals of the work at MSRC are described in the following section, followed by a report on what happened in the TREC 9 exercise. A final section makes some suggestions for what to do next.

2 Background

There is a long history of interest in question-answering in the NLP field. The semantics and pragmatics of questions and how they relate to their answers has received relatively little interest from pure linguistics, although there are notable exceptions, such as Belnap (1976) and the papers in Kiefer (1983). Much of this work follows in the tradition and style of formal, Montagovian linguistics. Belnap, for example, concentrates first on separating out the elements which make up a question: the request, which specifies what the questioner is asking for; the category conditions, which identify the type of the answer; and any presuppositions which must be met by the answer or flagged as unsatisfiable. Answers are classified by the information they select, what assertions they make about the completeness of the answer, and about the distinctness of possible answers. A sketch of a logic for representing these distinctions is presented. Belnap’s work is useful in clarifying the issues and separating out some relevant concepts, although it is far from being implementable.

At a similar time (late 1970s, early 1980s), there were a number of technology projects concerned with question-answering interfaces. The four papers in Bolc (1980) describe practical systems intended for tasks such as answering questions about stories and extracting information from databases by means of questions. Lehnert (1978) and her colleagues worked on question-answering on stories, probably the most effective and complete of the systems from this era. The approach (also found in other contemporary reearch) is to manually encode domain knowledge, whether in the form of Schank-style scripts and plans for stories, models which relate the contents of a database to a linguistic description of the real world, or formalisation of an expert’s knowledge into clauses of predicate logic. The systems were limited by the requirements of the domain engineering, as well as the erstwhile state of the art in natural language processing, such as the relatively narrow coverage of their parsers.

There was relatively little interest in question-answering during the 1980s and most of the 1990s, with a few exceptions being found in the FQAS (Flexible Query Answering System) conferences, and in the ExtrAns system of Molla (2000). ExtrAns provides answers to questions on Unix manual pages. Although the domain is again limited ExtrAns uses a thorough and well-designed approach. Questions and documents are analysed using a robust parser (Sleator and Temperely’s Link grammar parser (1991)), into a dependency representation. A logical form is extracted and recoded as Horn clauses. A Prolog system then attempts to find (representations of) answers which satisfy the clauses into which questions are mapped. ExtrAns is a prototype, but it nevertheless seems to give good results. One point of interest is that is it constructed from publicly available resources wherever possible.

2.1 Question-Answering at TREC

Question-answering was introduced as a task in TREC-8 in 1999, and was included as a task in TREC-9. An introduction can be found in Voorhees and Tice (1999). The exact specification of the task changed slightly from TREC-8 to TREC-9, but many of the details remained the same. The task requires each participating system to take a list of questions and find answers in a document collection consisting mostly of newspapers and similar texts. The questions are guaranteed to have at least one correct answer in the document collection, and as well as the answer text, the system must return an identifier for the document containing it. In TREC-8, the document did not actually have to support the answer but simply to contain it; in TREC-9, the documents were required to justify the answer to a human assessor, although the systems did not have to show that it had constructed or used such a justification. The answers were required to be either a maximum of 250 bytes in length, or a maximum of 50 bytes in length. The former roughly allows a sentence to be selected, and the latter a phrase. To a linguist, these may seem odd ways of defining length constraints, and they were selected largely because they are easy to operationalise. A suggestion of having an “exact answer” task in TREC-9 fell by the wayside precisely because of the difficulty of deciding what exact should mean.

In TREC-8, the questions were derived from a number of sources, with the bulk coming from the organisers, assessors and participants in TREC, and a few from the FAQ Finder service. As a result, a number of the questions appear rather artifical, and may in some case have been designed to favour certain kinds of system. For example, a number of the questions are very long and detailed, and in some cases are simply a variant of a sentence which appears in the document collection. An example is:

What is the name of the rare neurological disease with symptoms such as: involuntary movements (tics), swearing, and incoherent vocalizations (grunts, shouts, etc.)?

For TREC-9, the questions were shorter and more natural. A significant proportion of them were drawn from questions elicited from American high school students by Microsoft’s Encarta group, and supplied to TREC by Microsoft Research. All of the questions are factual. There were 200 questions in TREC-8, and 682 in TREC-9. For TREC-9, a core set of 500 questions was augmented by adding syntactic and vocabulary variants. A few questions for which it was hard to determine a correct answer were removed from this set.

Each participant was allowed to submit at most two sets of answers to the questions in each of the 250 byte and 50 byte categories. For each question, a ranked list of up to five answers was permitted. A panel of human assessors decided whether each answer was correct or not. Certain special cases were marked as incorrect, for example an amount of money without the name of the currency, a length without the units of measurement, or a list of possible answers with no indication of which the selected one was. There were also some cases (in TREC-8, at least) where the assessors were required to make a judgement which involved some controversy. For example, the question

Where is the Taj Mahal?

was judged to have Agra as a correct answer, but not Atlantic City, even though there is a casino called the Taj Mahal in Atlantic City. The evaluation measure which was used is called Mean Reciprocal Rank, and is defined in a subsequent section.

2.2 Question-Answering in the NLP community

In parallel with the introduction of question-answering into TREC, there has been a rise of interest in the NLP research community, with an AAAI symposium (Fall, 1999) dedicated to the subject and thematic sessions at several major conferences. A group of the researchers proposed to publish a vision paper which would outline long term direction for the field; the proposal was made in Spring 2000, although the vision paper has yet to appear. At least some of the work in the NLP community is being done in conjunction with the TREC tasks. There is also work which is addressing more general kinds of questions, for example going beyond simple factual answers.

2.3 Question-Answering with LF triples

There is one specific technique for question-answering, relying on natural language processing, which bears a little further examination. In QA with LF triples, logical forms are extracted from the documents, and from these triples consisting of two terms and the (directed) relation between them are constructed. The LF-triples are then used as the index terms in a database. To answer a question, the LF triples from the question are extracted and matched against the stored ones and documents for which there is a match are retrieved. This technique has been used within Microsoft, for example to provide a query system on Encarta; details can be found in Braden-Harder et al. (1998) A similar technique was used by one of the participants in TREC-8, CL Research. In the Microsoft work, the initial list of documents is then ranked using a weighting scheme which favours certain relations over others; for example verb-object combinations lead to a strong match. The final document ranking is formed by taking the ranking from a conventional search engine and modifying it with the one from the LF triples. The results appear encouraging, in that good improvements in precision over a search engine were found, including evaluation on just the top ten and top one documents. However, further evaluation is really required before the results can be trusted, partly because the test set was small, and partly because the evaluation is made on the basis of the relevance of the whole documents, rather than extraction of a specific answer. A direct comparison using the TREC data would be interesting to see. The work of CL research did not perform well compared to other systems in TREC-8, as we shall see below, although it is not possible to tell how much of this is due to the specifics of the NLP component.

2.4 Techniques

The majority of the participants in the TREC-8 task used techniques consisting of a conventional retrieval engine which was used to find documents containing some or all of the words in the question, a classification of the questions, and finally an information extraction engine to select candidate answers. The information retrieval engines were typically based on ones developed for the document retrieval task in TREC. The information extraction engines were generally existing systems for named entity identification, and a number of them had been previously used in the message understanding conferences (MUC). Typically where NLP was used in these systems, it was limited to lightweight processing such as tagging and shallow parsing.

Most of the systems relied on some sort of classification scheme based on the analysing the questions, to identify the type of the answer. Typically, there were a number of specific types such as city, amount of money and year, and some more general types such as person (for who-questions) and entity (for what-questions).

Descriptions of the systems can be found in the TREC-8 proceedings. The table below gives a brief and approximate summary of some of their characteristics. (NE = named entity).

	Participant
	Description

	AT&T Labs
	No details

	CL Research
	Logical form triples; ATN parser

	Cymfony
	Document analysis using templates for NEs; pattern rules on questions to select NE type and request terms

	GE, Rutgers, SICS, U. Helsinki, and Penn
	No details

	IBM T.J.Watson Research Center
	Predictive annotation (labelling of NEs in documents); answer type selection from question; ranking based on weighted sum of feature values.

	LIMSI-CNRS
	Shallow parsing and typing of questions; term (noun phrase) and NE extraction

	MITRE
	Shallow parsing and typing of questions; entity selection with co-reference resolution

	MultiText Project
	No details

	National Taiwan University
	Weighted keyword matching

	New Mexico State University
	No details

	NTT DATA Corporation
	Question typing; IE with ranking on proximity to request terms

	RMIT
	Convert question to a query; passage extraction

	Seoul National University
	IR + passage extraction

	Southern Methodist University
	Predict answer type from question words; IR + paragraph extraction; tagging + NE extraction (claimed to include parsing, but no details)

	University of Iowa
	Entity tagging using simple grammar, for both questions and documents;

Question typing; adaptive filtering to select documents; clause extraction and comparison

	University of Maryland
	Broad-coverage dependency parsing (LINPAR); comparison of dependency structures; question typing

	University of Massachusetts
	IR+IE (in conjunction with Sheffield)

	University of Ottowa
	Question typing; paragraph extraction; selection of text spans based on distance from request terms

	University of Sheffield
	Existing IR system and IE system (from MUC); use coreference resolution with semantic typing to select answer

	Xerox Research Centre Europe
	No details

2.5 Evaluation measures

The conventional measures of precision and recall are not very well suited to evaluation of question-answering systems, as the goal is generally to deliver a small number of concise answers per question. The measure used in TREC is called Mean Reciprocal Rank (MRR), and is the average over all the questions of 1 divided by the rank of the first correct answer. Thus a question which has a correct answer at the top of the list of results scores 1, in second position 0.5, third 0.33 and so on. If no correct answer is given, the score for that question is zero. The measure gives no credit for systems which report that they do not know the answer to a question, reflecting the fact that in the TREC evaluation every question is guaranteed to have a correct answer somewhere in the document collection.

Other measures have been proposed, for example the percentage of questions which have a correct answer anywhere in the top 5 results, the mean rank (as opposed to mean reciprocal rank) of the correct answer, and schemes which use an alternative to the reciprocal such as an inverse exponential. However, there is no clear reason for preferring any of these schemes over the others, and so for the time being MRR is the standard measure.

The MRR values for the systems in the TREC-8 evaluation are shown below. The vertical axis shows the MRR, and the horizontal axis shows the position of the run in the order (i.e. 1 = best, 2 = second best, and so on). The figures are given for runs which returned a maximum 250 byte result and for one with a 50 byte maximum result. Some groups submitted more than one run. For more details of the scores, see the TREC-8 proceedings.

[image: image1.wmf]Mean Reciprocal Rank - 250 byte runs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Position in ordering

Mean Reciprocal Rank

[image: image2.wmf]Mean Reciprocal Rank - 50 byte runs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Position in ordering

Mean Reciprocal Rank

3 Question-Answering using Logical Forms

We now start to look at the techniques used in the MSRC system for TREC-9 (MSQ9). The initial intention was to use an approach which applies inference rules from questions to spans of text containing significant terms from the question, and in doing so derives the answer as a side effect of the rules. The deadline for TREC-9 forced a simpler approach to be adopted before significant development had been carried out on the inferential approach. A sketch of what was intended appears first, followed by a general description of the actual approach. More detail about the specific processing appears in section 4.

3.1 A inferential approach

In an inferential approach to question answers, we derive semantic representations from both the question and a candidate answers, and then attempt to find inferences which would allow us to match every “fact” expressed by the question with one in the answer. The facts represent the properties of objects and the relationships between them. For example, the question Who won the Nobel Peace Prize in 1984? might be represented as something like the following. Note that the representations used here are intended the get the general idea across, and the choice of what the representation should actually be is a difficult one; more on this in a moment.

Nobel_peace_prize(x)

Win(e,y,x)

Time_of_event(e,z)

1984(z)

which can be read as “x is a Nobel Peace Price; there was an event e of y winning x; the time of event e was z; z is 1984”.We also mark y as what we are trying to find a value for. If a candidate answer were a sentence containing the phrase … Desmond Tutu, the 1984 Nobel Peace Prize winner …, the representation could be:

Desmond_Tutu(p)

Winner(p,q)

Nobel_peace_prize(q)

Time_of_entity(q,r)

1984(r)

which is read as “p is Demond Tutu; p is the winner of q; q is the Nobel Peace Prize; the time associated with entity q is r; r is 1984”. To deduce the answer, we then apply inferences based on a set of schema, which licence the inferences that are valid. Without going into the details, we would start with an identity schema, which would tell us that x=q and z=r, and in doing so discharge the question predications Nobel_peace_prize(x) and 1984(z). A second schema tells us that for certain predicates P which are related to an agentive noun Q, then if we have P(e,y,x) and Q(p,q), then we can match up y with p and x with q. A gloss on this is that “if there is an event of y winning x, then y is a winner of x”. In the example, we get y=p, x=q and discharge Win(e,y,x). Note that x=q was already known, and if we had had x set equal to something else, then we would have had either a weaker match, or a contradiction. Finally, we have a rule which says the time of an event e with agent y can be equal to the time associated with and agentive, so confirming z=r and discharging Time_of_event(e,z). At this point, we have discharged all the predications from the question and found that y=p. The final stage is to generate the answer from undischarged predications in the answer representation which describe p, namely Desmond_Tutu(p).

An advantage of the interential approach is that progressively more sophisticated inference rules schemas can be introduced in order to find answers in a more complex way. For example, we could use default rules, carry out presupposition accommodation and make reference to pragmatic principles. Examples of these are (informally):

· The largest city in a country is usually the capital (default rule)

· For a question such as Who is the author of the play “Hamlet”?, there is a presupposition that Hamlet is a play, and we can allow it to be omitted from the answer, unless there is conflicting information, as in Zeferelli’s film of “Hamlet”.

· Answers can be kept to just the information needed to answer the question and to distinguish candidate answers from one another (pragmatic principle of quantity).

There are numerous difficulties with trying to make this technique practical, in particular keeping the inference process computationally tractable given that we may need to process large volumes of data. It is also worth noting that there is one apparent difficulty which may not really be a problem. We are not really giving a detailed semantics to the representation of questions and candidate answers, in that the logical representation does not have to make reference to anything outside its own formal system. For example, it need not have a model theory. This helps to avoid many of the problems with getting precisely the right representation and interpretation which has bogged down work in semantics (as witnessed, for example, by 30 years worth of discussion about what donkey sentences mean). We can work with representations and inference schemas which are just good enough to achieve a particular level of accuracy in answering questions, and no more.

Nevertheless, for the TREC-9 evaluation, we decided not to pursue this approach. The main reason beind this was simply time. It is not trivial to extract the representation which is needed from the logical forms that NLPWin produces. For example, in the example above, we would need to define what the argument structure of the predicate win is; what is the role of each variable in a predication such as Win(e,y,x)? The LFs produced by NLPWin at first sight seem to be capable of providing this information, in that relationships between nodes of the LF are labelled with the type of the relation (Tsub, Time, Mod and so on). What hinders the process is a clear distinction between the complements of predicates which would appear directly in the argument structure, and the adjuncts of predicates which might appear as modifiers of the event argument e. The lack of documentation of the interpretation of the relations also hinders the process. With time, these difficulties can be overcome, but for the TREC-9 evaluation, it was decided to take a simpler (if rather ad-hoc) strategy.

3.2 A dependency-based strategy

A simpler strategy than using full inferencing on the LFs is to attempt to match them directly, using additional rules to say which non-identical relationships can be considered as equivalent. This approach has something in common with the dependency structure matchers of Elworthy (in press) or Baclawski et al. (see http://www.jarg.com/). In approaches of this kind, the matching is carried out by first identifying the most important word(s) of the question, typically the head of the phrase. A corresponding term is found in the candidate answer. For each term in the question which stands in some relation to the head, we look to see if there is a term in the answer related to the term we have already found, in a way which is compatible with the relation in the question. On a successful match, the process continues recursively through the question structure. Non-identical relationships are permitted, and in both the question and the answer, it may be possible to skip over some intermediate relationships, for example in the case where there is an ambiguity about where a modifier should be attached. Terms and relations from the question which cannot be matched incur a penalty unless they are optional such as presuppositional terms, and non-identical term and relation matching may do so too. This allows partial matches to be found, and assigned a lower score than an exact match.

The structure matching strategy was considered for the TREC question-answering experiment, but it was rejected for similar reasons to the inferential one. When a simple dependency structure which is relatively close to the syntactic form is used, as in Elworthy or Baclawski, then dependency matching is simpler than using full inference, as the rules do no need to know about the argument structure of predicates or give an kind of interpretation to the relations between terms. However, with full-scale LFs, there is again a significant overhead in deciding which relations are considered equivalent. In addition, after carrying out pilot studies on a few sample questions, it was not clear that it would provide much benefit over a strategy based on using simple features of the LF in conjunction with a measure of proximity between the answer term and terms matching those from the question. This is the approach we decided to adopt
, and it is described next.

3.3 Feature and proximity matching

The basis of the system for the TREC-9 evaluation was to use certain features of the logical form to identify terms which could be an answer to the question, and then to calculate a proximity measure to the question terms. The proximity measure works by marking each term in an answer sentence which matches a term from the question (allowing for morphological variants), and then seeing how far this term is from the candidate answer, measured as the number of relations that have to be traversed in the logical form. The idea of proximity is to provide a quick simulation of dependency matching, in that if an answer were closely related to the matched question terms, then it would have a small proximity, whereas if it had an indirect relation, the proximity would be lower. There is, of course, no linguistic basis for this approach, and the idea is really to obtain a baseline for performance based on a simple and easily implemented technique. The overall proximity is calculated by summing these distances for each of the question terms, taking its reciprocal, and weighing it by the logarithm of the total number of the matched question terms plus one. The latter factor is simply a way of taking into account what proportion of the question terms were matched. The logarithm is used just to weaken the factor; although this is ad hoc, it seems to give a better performance that using just the proportion of the query terms or no factor at all. An enhancement to this process might be to weight question terms by importance, for example giving lower weight to question terms which are more deeply buried in the logical form.

The identification of candidate answers is made on the basis of finding terms (nodes) in the logical form which have certain characteristics. For some types of question, the characteristics are lexical properties. Thus, if we have a who question, and we see a proper name in close proximity to question terms, there is a good chance that it is the right answer. For other question types, we make use of specific relations; thus answers to where and when questions may be signalled by terms which are the target of location (Locn in NLPWin) and time relations. Not all question types are as simple as these. For what-is questions, such as What is Head Start? or What is the largest city in Germany?, the answers are likely to stand at the end of certain kinds of relations, provided that a suitable question term lies at the other end of the relation. One such relation for what-is questions is the Equiv relation which would be derived from a predicative sentence such as

Head Start is a preschool program (…).

Logical form relations in NLPWin are directed, and the feature identification process must sometimes take this into account and sometimes ignore it. Thus, an equally good answer to the above question could come from the sentence

One such preschool program is Head Start.

In the first of these sentences, the answer is found at the target of the Equiv relation, while in the second it is at the source of it. For other relations, such as Locn and Time, it would be a mistake to ignore the directionality of the relation.

A still more complex kind of matching is found with What-role questions, such as

What does the Peugot company manufacture?

What did Shostakovich write for Rostropovich?

In questions like this, we use the relation on which the wh-word is found as the feature which will identify the answer, and require that the main term of the question (manufacture, write) is the source of this relation. In addition, for any other relations of this term which are present in the question but have no counterpart in the answer, a penalty is incurred. Cases of this sort are getting very close to dependency matching.

4 The MSRC Question-Answering System

4.1 Architecture

The architecture of MSQ9 is shown below:

[image: image3.wmf]Question

Query terms

Question LF

Documents list

Sentence list

Sentence LFs

Okapi

NLPWin

Term extraction

Answer list

NLPWin

Matcher

Sentence

selection

NLPWin

Processing proceeds as follows. The question is processed by NLPWin to produce a logical form, and in addition a set of query terms is extracted from it. The query terms will normally contain all of the words of the question less the question word itself (what, who, how, etc.) and a few other stop words. The query terms are used by the Okapi IR engine with BM25 weighting to produce a list of documents. The precise number of matching documents can be varied; for all the experiments described here it was 100. The documents are passed to NLPWin, to break them into sentences. Other sentence breakers could be used here. The list of sentences can be very long, and so there is an internal threshold which allows only a fraction of the list, to be processed. Processing starts with the sentences which contain the most question terms. NLPWin is used to obtain logical forms for these sentences, and they are then compared with the question’s logical form to produce a ranked list of answers with scores.

4.2 Language processing and NLPWin

NLPWin is used for three different stages of processing. Firstly, it is used to extract the logical form from questions. The logical form is then manipulated to simplify later stages of processing. A second use of NLPWin is to segment the documents into sentences. Finally, the logical form is extracted from the sentences and used as an input to the matching stage. Here we describe how the logical form of questions is manipulated, and then note some problems which were found with NLPWin.

4.2.1 Question manipulation

The aim of the question manipulation stage is to simplify the logical form of questions in order to make it easier to classify them and to label certain terms in the question as being formal, and hence not expected to match a term in a candidate answer. Here we look at some example manipulations.

The majority of the manipulations look for a specific question word, attached to a specific relation. For example, a question of the form Who is X receives a logical form in which X has an Equiv relation to a node for who. In such cases, we simply delete the relation and who and add an annotation to the top node of X which indicates that we are looking for an answer to a Who question over objects with the property of being X. In NLPWin terms, this is recorded as an extra bit on the X node. Similar principles apply to many of the question types. The relation may be other than Equiv; for example in where and when questions, it is often Locn and Time, respectively. As well as applying this to question words, it is also applied to some special terms related to question words. For example, in a how much question, NLPWin does not produce a node for the word how, but does annotate the much node with the property Wh.

A second case which occurs frequently is logical forms in which the topmost node is be, usually with a single child, or with one child which is a Wh-word and one which is a content node. In such cases, we remove the be node, and in the latter case move the Wh-word’s properties to the other child.

There are some common subjects for what questions, such as “what country…”, “what year”… In these cases, we remove the whole what-phrase and mark the remaining top level node with a special property to indicate that the question should be answered as a what question, but with a restriction as to the answer type. This is only done when the subject corresponds to a property which NLPWin places in candidate answers, such as Cntry for country.

Finally, imperatives of the form Name an X… are mapped into essentially the same form as what questions.

4.2.2 Problems with NLPWin

A number of problems were found with NLPW during the processing of sentences. Most of the problems occurred when analysing sentences to their logical form
. All processing after the initial segmentation into sentences was done by passing one sentence at a time to NLPWin via a COM interface, with the result being returned as a string encoded in XML. The two most serious problems were that NLPWin simply hangs on some sentences, and on others a stack overflow was reported. Once a stack overflow had occurred, all subsequent sentence processing was unreliable. As a practical measure, the component of the question-answering system which calls NLPWin keeps a table of sentences which are known to be bad (listed by document id and sentence number within the document), and skips them altogether. There were relatively few cases where NLPWin hung outright, but one general case which seems to cause problems is sentence with several phrases separated by semicolons. There is no obvious pattern to the sentences which cause stack overflows.

Next, there are some constructs which NLPWin seems to handle badly, and which we therefore edit out of sentences before submitting them for analysis. In some cases, potential answers are lost in doing so, but more often it avoids incorrect parses or logical forms. The two main cases are parenthesised material in the middle of a sentence, and quoted material which includes a colon. The latter is changed to a comma.

There are some sentences which just fail to parse or give an incorrect parse. All grammars leak, as the saying goes, and so this is not too surprising, but there are some apparently straightforward cases which NLPWin is unable to handle. An example in the TREC-8 question set is

What company is the largest Japanese ship builder?

NLPWin here decides that ship is the main verb of the question.

Finally, the speed of NLPWin was a hindrance. Each question involves analysing a few hundred or a few thousand sentences to their logical forms, often taking 30 minutes or more. Occasionally, NLPWin’s memory requirements become excessive, in some cases exceeding 300 MB to analyse an apparently innocuous sentence. In the TREC-9 evaluation, the only way of completing all the questions in the time allowed for the task was to use a cluster of 16 machines each with 384 MB of memory.

4.3 Matching

Matching proceeds by first classifying the question, then selecting and scoring possible answers, and finally by extracting the phrase to return as the result. The processing of question classification, or assigning a type to each question, is largely straightforward. For most cases, we use annotations on nodes in the logical form either direct from the NLPWin analysis or assigned during question simplification. For example, all questions of the form What is X were simplified to a LF node representing X with an annotation to indicate that the original question word was what. One important distinction which is made at this stage is between questions which are looking for an object with certain properties as in What is X, Who is X, When was X and so on, and one in which some argument role of a predicate has to be filled, as in Who won the election, Which company is X’s biggest competitor. A few questions are left as having Unknown type, and questions with an incomplete parse as assigned the type Bad.

Answer selection is the most complex part of the matching process, and we return to it in a moment. The result of answer selection is a node in the logical form of the answer sentence, and a score. To extract the answer, we look up the syntactic node which NLPWin indicates is associated with the semantic node, and take the portion of the original sentence associated with the syntactic node. In a few cases there is no such syntactic node, and the predicate of the logical form node is used instead. This process is imperfect, and was intended as a quick way of recovering the answer. In particular, it tends to give phrases which span more words than are necessary. For example, the logical form node may describe an entity, but the corresponding syntactic node is a prepositional phrase (since the preposition is absorbed into the structure of the LF) resulting in an answer such as by X or to X rather than simply X. If the resulting phrase is longer than the maximum allowed width (50 bytes or 250 bytes), then words are removed from it until it is short enough. By preference, words which appeared in the question are removed over ones which were not, and otherwise the process alternates removing words from the left and right hand ends of the phrase.

4.3.1 Answer selection

Answer selection is the heart of the matching algorithm. The rules used in the TREC-9 test are rather ad hoc; some of them are reasonable well principled, while others are hacks which seemed to work more often than any alternative. The general principles behind various classes of rules follow. Recall that we are aiming to identify a node in a sentence which could be an answer. Having found such a node, or nodes, we use the proximity calculation to determine how closely it is related to the question terms. The principles we use to identify candidate answers nodes include the following:

Node properties

Node properties are used when answers usually have clear properties, but where the relationship with the query terms either can show a lot of variation or does not add much over simple proximity. Who, HowMany and HowMuch questions are good examples, although in the TREC-9 evaluation we will see that there is a risk involved in treating Who questions this way. The node properties take the form of bits assigned by NLPWin usually on the basis of information stored in the lexicon. Node properties are used in three stages: firstly, we look for nodes which have one or more of a set of required properties; then we remove any which have certain properties which might indicate we have made the wrong choice; and finally, we look for preference properties whose omission indicates that the score assigned to the answer should be lowered. For example, in the case of Who questions, the only required property is PrprN (proper name), nodes are removed if they have properties such as Tme (time), Titl (title) and Cntry (country), and the score is lowered if node does not have one of the properties Anim (animate), Humn (human) or Nme (name).

Relation targets

Some answers can be found be looking for nodes which are the target of a particular relation type, using proximity to determine whether the node is likely to be related to the question terms. Examples are Where and When questions, answers to which are often found as the target of Locn and Time relation. For When questions in particular, a time expression in the answer may be not be attached directly to any of the question terms, appearing instead on a different argument of a verb or on a modifier of the question term.

Node-to-node relations

Node-to-node relations come closest to using the dependency matching described above. The idea here is to look for a node which lies at one end of a relation, the other end of which is a question term. The case where this is used most extensively is in questions of the form What is X. Answers are typically found as standing in an Equiv, Mod or Attrib relation to X in the answer, as in the logical forms generated from phrases such as (the answer is underlined here):

Head Start is a preschool program

Berlin is the capital of Germany

Sirius, the brightest star visible from Earth

The first two of these illustrate Equiv relations, and show that the answer can be either the source or the target of the relation in this case. The third example is a Mod relation. Some relations may signal the answer better than others; for example Equiv tends to indicate the answer more strongly than Mod or Attrib. The term which stands at the other end of the relation from the answer, i.e. the term from the question, may be the head of the question, but is not necessarily it. Thus if the question is What is the capital of Germany?, the head of the question is capital, but we are as likely to find the answer related to the term Germany. Simple examples like this could be handled by specialised rules, for example manipulations of the question’s LF, but this cannot always be done reliably. One case where we definitely do want the relation to be to a specific question word is questions about a specific role of a predicate. Thus, in Who won the SuperBowl in 1968, the answer should be in the subject role of the verb win.

Combinations

Some of the questions types use more than one of these techniques, and select the one which gave the best score. An example is WhoRole questions (which ask who performed a particular role of an action), which both look for words with the same properties as Who questions, and also look for entities in a particular role of a verb, as for WhRole and WhatRole questions (node-to-node relation type of answers).

5 The TREC-8 and TREC-9 Experiments

5.1 TREC-8 test

The MSQ9 system was developed and tested using the data from the TREC-8 evaluation. There are 200 questions in the test set, together with a list of answers judged as correct by human assessors. The answers are available both as a list and as a set of Perl regular expressions, to allow quick automatic checking.

For an initial stage of evaluation, the retrieval stage was run in isolation, and the documents were examined to see if a correct answer appeared anywhere in them. The idea of this was to set an upper bound on performance, by finding the best score which could be achieved if a perfect answer identification and extraction component were available. The evaluation also allowed tuning of the number of documents returned by Okapi: too few, and a correct answer might be missed; too many, and the processing time of the later stages would get out of hand. The results at various document cutoffs appear in the following table. The figures shown are the proportion of questions for which a correct answer could be found within the cutoff, i.e. they give the precision.

	Cutoff
	1
	5
	10
	50
	100

	Score
	0.385
	0.640
	0.735
	0.880
	0.920

The figures show that the retrieval stage performs well with a document cutoff of 100, and this was used for the overall experiments.

A variant of the experiment was run in which the term list for the retrieval was derived from the logical form, rather than by just taking the question and using a stemmed and stopped wordlist. The idea was to see if the segmentation and morphological analysis provided by NLPWin would help the retrieval stage. The scores were in general very slightly less than those above, showing that there is no advantage to using NLPWin as a pre-processor to the retrieval stage (although if it was also used on the documents, the situation might be different).

The performance for the overall system was calculated using mean reciprocal rank. Three scores were calculated: for the 50-byte and 250-byte limited runs, and for a run in the answer could be of any length, provided it lay within a single sentence. The results were as follows:

	Run
	50-byte
	250-byte
	Unlimited

	MRR
	0.357
	0.425
	0.446

The first observation is that the best score, for the unlimited run, is significantly less than the maximum from the retrieval stage (0.920). This gives some indication of the degree to which the answer identification could be improved. Secondly, the score does decrease with the window size, indicating that there is also scope for improvement in answer extraction. Compared to the official TREC-8 runs presented in section 2, the 50 byte run would have come roughly 3rd out of 20 (or 21 including this run), and the 250 byte run about 10th out of 25.

5.2 TREC-9 test

The TREC-9 test consisted of 682 questions. Of these, 193 were variants of questions in the other 500, with the changes either being in the vocabulary (mountain/peak) or the syntax (What is the highest mountain in the world?/Name the highest mountain.) This results in 693 questions, from which a few were removed because it was decided after the test set had been issued that it was too hard to select a consist answer. The terms of the task require the system to be frozen before the experiments are run, and the results quoted here are therefore for exactly the same system which was used on the TREC-8 data. The official evaluation results for the 250-byte answers gives a MRR of 0.274. This is surprisingly low compared to the TREC-8 value of 0.425. So what went wrong?

5.3 A detailed analysis

In order to try to understand why the performance on the TREC-9 questions was so much worse than the TREC-8 ones, we move to looking at the results for the separate question types. In the table below, we list: the number of questions of each type in the TREC-8 and TREC-9 test sets; the MRR on that type; the relative contribution of the class to the overall results; and the changes in MRR and relative contribution. The relative contribution of a question type is simply the MRR for that type multiplied by the fraction of the questions which have that type. For example, if a type had a MRR of 0.5, and one quarter of all the questions in the test set had that type, the relative contribution would 0.5x0.25 = 0.125. The difference in MRR gives an indication in the abstract of how different the performance on two question types was. If there is a large change, it would suggest that the rules for the type are too sensitive to the particular questions. The change in relative contribution gives an indication of how much this matters, and therefore where efforts should be focussed to alter the system’s performance. There may be more benefit in correcting a small decrease in MRR on a class with many questions as opposed to a large decrease on a class with only one or two. Note that some question types are handled identically, and we therefore list them both as the separate types and combined. The table is ordered by the change in the relative contribution.

	Question type
	TREC-8
	TREC-9
	Change

	
	#
	MRR
	Rel.Cont.
	#
	MRR
	Rel. Cont
	MRR
	Rel. Cont

	Unhandled

 Unknown

 Bad

 WhPrep

 HowDo
	11

 2

 5

 3

 1
	0.26

 1.0

 0.10

 0.11

 0
	0.014

 0.010

 0.0025

 0.0017

 0
	84

 38

 6

 35

 5
	0.36

 0.37

 0.50

 0.35

 0.20
	0.044

 0.020

 0.0044

 0.018

 0.0015
	0.10

 -0.63

 0.40

 0.24

 0.20
	0.030

 0.010

 0.0019

 0.016

 0.0015

	WhoRole
	20
	0.29
	0.029
	62
	0.36
	0.032
	0.073
	0.0029

	HowLong
	1
	0
	0
	1
	0
	0
	0
	0

	HowManyTimes
	1
	0
	0
	0
	0
	0
	0
	0

	WhatMeas
	1
	1.0
	0.0050
	8
	0.29
	0.0034
	-0.71
	-0.0016

	When
	18
	0.38
	0.034
	47
	0.45
	0.031
	0.070
	-0.0032

	Why
	2
	0.50
	0.0050
	2
	0.5
	0.0015
	0
	-0.0035

	HowFar
	1
	1.0
	0.0050
	1
	0
	0
	-1.0
	-0.0050

	WhatTime
	6
	0.29
	0.0089
	13
	0.12
	0.0022
	-0.18
	-0.0066

	Where
	21
	0.44
	0.046
	71
	0.37
	0.038
	-0.071
	-0.0078

	HowMuch
	3
	0.67
	0.010
	4
	0.31
	0.0018
	-0.35
	-0.0082

	HowMany
	15
	0.28
	0.022
	26
	0.29
	0.011
	0.0032
	-0.010

	HowProp
	5
	0.60
	0.015
	10
	0.10
	0.0015
	-0.50
	-0.014

	What+

 What

 WhEquiv
	39

 38

 1
	0.52

 0.53

 0
	0.10

 0.10

 0
	211

 195

 16
	0.20

 0.21

 0.15
	0.063

 0.060

 0.0034
	-0.22

 -0.32

 0.15
	-0.031

 -0.041

 0.0034

	WhRole+

 WhRole

 WhatRole
	28

 22

 6
	0.38

 0.34

 0.50
	0.053

 0.038

 0.015
	92

 56

 36
	0.16

 0.12

 0.23
	0.021

 0.0095

 0.012
	-0.31

 -0.22

 -0.27
	-0.038

 -0.028

 -0.0031

	Who
	28
	0.55
	0.078
	52
	0.30
	0.023
	-0.26
	-0.055

To make the significance clearer, the changes in MRR and relative contribution appear below.

[image: image4.wmf]MRR change

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Unhandled

WhoRole

When

HowMany

HowLong

HowManyTimes

Why

Where

WhatTime

What+

WhRole+

HowMuch

HowProp

WhatMeas

HowFar

[image: image5.wmf]Relative contribution change

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Unhandled+

WhoRole

HowLong

HowManyTimes

WhatMeas

When

Why

HowFar

WhatTime

Where

HowMuch

HowMany

HowProp

What+

WhRole+

Who

It then follows to look in more detail at what is going on in some of the more significant changes. Three classes in particular appear worth investigating on the basis of the change in relative contribution: Who, What+ and WhRole+.

In the case of Who questions, the problem appears to be that some of the questions aim to identify an entity, while others aim to elicit a description of an individual. The two types are illustrated by

Who is the richest person in the world? (entity)

Who is Desmond Tutu? (description)

The TREC-8 test set included only entity questions, and the rules for answering Who question did not allow for the description case. This could be corrected by adding a test to see if the question term already has the properties we look for in the entity case (PrprN, etc.), and if it does using the same approach as What questions such as looking at Equiv and Mod relations. One interesting point here is that cases like this are handled well by an inferential model, as follows: when we see the word Who in the question, it tells us that we are looking for some entity which has a name and has some properties. If the question tells us the name, then we discharge this constraint regardless of the answer, while for questions such as Who is the richest person in the world? we would require the answer to discharge it.

The problem with What questions appears to be that many more of the questions have the form What is the X of Y? than the original set, for example

What was the name of the first Russian astronaut to do a spacewalk?

What is the population of the Bahamas?

These are only handled well for a small number of predefined cases for the category condition X, such as city, name, and kind. To improve this class, we would need to have a set of additional rules which encode information about the category condition, for example that a population is usually expressed as a number.

A similar remark applies to the WhRole questions, many of which have the form Which X did Y?, such as

What sport do the Cleveland Cavaliers play?

Again, a few special cases are handled already, but the inclusion of some additional ones would help to select correct answers more reliably. One issue to be considered here is what conditions should have special rules and what should not. It is reasonable to have a list of sports for the above case, but what about

What soft drink would provide me with the biggest intake of caffeine?

The answer here appears to be some wider encoding of world knowledge, perhaps on the lines of MindNet. An interesting philosophical point emerges. If we are encoding world knowledge, should we try to encode all knowledge in the documents into some knowledge representation structure, and answer questions directly against it? This appears to be the thought process behind using MindNet (Richardson et al., 1998), and it was also the approach used in the question-answering systems of the 1970s (Lehnert, for example). The difficulty arises when the sources of the knowledge become more diverse and less coherent than those behind MindNet, or the Unix man pages used in ExtrAns. There may be opinions, interpretations, inconsistencies, and simple errors in the document collection. An important challenge for future work may therefore be looking at how to build a system which merges definitive, pre-encoded knowledge, and ad-hoc documents of unknown reliability.

6 Summary and prospects

We now summarise the overall direction that the work has taken so far and look at some future prospects. Question-answering is long-standing area of interest in the NLP community, and has shown a resurgence in the last two years, driven by interest from the IR community. Most current work connects together existing technology for information retrieval and information extraction using some kind of typology of questions, although there are exceptions such as Microsoft’s own work on logical form triples. We proposed a technique based on inference between predications derived from the question and from candidate answers. For reasons of time and complexity, we then described an alternative approach which used salient characteristics of the logical form to identify possible answers, and a term-proximity scoring scheme to rank them. On the TREC-8 data, this performed adequately, although less well then the top scoring TREC-8 systems. On the TREC-9 data it did much worse, due to the need to allow for more general interpretation of some question types (who), and to specialise others (what, whrole).

The technique of using features of the logical form together with proximity was adopted largely as a result of time constraints, and it is possible that further development effort would have given better results and made it less sensitive to the details of the test set. However, it is not clear that it is a good direction for future research. In the first place, it does not seem to offer a benefit over the more lightweight IR+IE approaches used in TREC-8, and like those approaches, it will probably reach its limits with questions which are less factual and with answers which are less concise than the TREC ones. In addition, it suffers from a deficiency found in many of the TREC approaches, in detecting when there is no good answer available is also hard; again, the nature of the TREC task does not bring this out. Our general conclusion is that the technique as developed so far may be useful in providing a baseline performance level, but it is probably more productive to look at other techniques in the long term, especially if we really want to obtain the benefit of having a large-scale NLP system available.

On the subject of NLPWin, some problems to do with both implementation and coverage were noted earlier. A further difficulty is the lack of information about the exact interpretation of both the logical forms and the bits (properties) associated with nodes in logical forms. The documentation is very limited, and for most of the work here, it was necessary to either consult directly with the NLP team or to attempt to reverse engineer an interpretation. Without more details, it is hard to really treat the logical forms as providing semantic information, which we can use in an inferential approach, or even in the simpler features-with-proximity approach.

Finally, we make three suggestions for further work in question-answering. The first is to identify patterns in questions which require more knowledge engineering. An example is questions of the form what is the X of Y? such as what is the population of China?, where we need information that a population is typically presented as a number, and perhaps also that if it is the population of a country, then it is typically a number greater than, say, 100,000. Secondly, the inferential strategy is still of interest. The challenge here is to find ways of doing realistic reasoning without having to solve all the problems of AI. The best way to attack this problem is probably not to take a test set such as the TREC ones, but to target a smaller number of critical examples, particularly where there is variation in the way the information is presented in answer documents, and to find what principles are needed. Once they have been identified, ways of tuning the inference procedure both for computational efficiency and to select between alternatives can be carried out. The third area which would be interesting is to look at how modelling of the linguistic context can help. At its simplest, there would be a benefit from anaphora resolution. There are also more sophisticated kinds of context, which apply particularly in with discrete documents. For example, what is the population of China? might find an answer in a document which mentions China in the title or in an early sentence, but does not mention China in the sentence where the population is stated. By modelling the topic structure of the document, we can track this information and hence find better answers.

Appendix A: Question types

These are the different types of questions which were used, with some examples, and the number of such questions in the TREC-8 and TREC-9 test sets. Some of the classes could probably be merged, and other subdivided.

HowDo

How did Bob Marley die?

How do you abbreviate "Original Equipment Manufacturer"?

TREC-8: 1 TREC-9: 5

HowFar

How far away is the moon?

TREC-8: 1 TREC-9: 1

HowLong

How long do hermit crabs live?

TREC-8: 1 TREC-9: 1

HowMany

How many dogs pull a sled in the Iditarod?

How many hexagons are on a soccer ball?

TREC-8: 15 TREC-9: 27

HowManyTimes

How many times was pitcher, Warren Spahn, a 20-game winner in his 21 major league seasons?

TREC-8: 1 TREC-9: 0

HowMuch

How much folic acid should an expectant mother get daily?

How much money does the Sultan of Brunei have?

TREC-8: 3 TREC-9: 4

HowProp

How tall is the giraffe?

How large is Missouri's population?

TREC-8: 5 TREC-9: 10

WhEquiv

What language is mostly spoken in Brazil?

What nationality was Jackson Pollock?

TREC-8: 1 TREC-9: 16

WhPrep

What is Francis Scott Key best known for?

What are birds descendents of?

TREC-8: 3 TREC-9: 35

WhRole

What state has the most Indians?

What company sells the most greeting cards?

TREC-8: 22 TREC-9: 56

What

What was the name of the first Russian astronaut to do a spacewalk?

What is the population of the Bahamas?

What is Head Start?

Name a flying mammal.

TREC-8: 38 TREC-9: 200

WhatMeas

What type of bridge is the Golden Gate Bridge?

What kind of animal was Winnie the Pooh?

TREC-8: 1 TREC-9: 8

WhatRole

What does laser stand for?

What does the abbreviation OAS stand for?

TREC-8: 6 TREC-9: 36

WhatTime

What year did Montana become a state?

CNN's first broadcast occurred on what date?

TREC-8: 6 TREC-9: 13

When

When did the vesuvius last erupt?

When was the first flush toilet invented?

TREC-8: 18 TREC-9: 48

Where

Where is Belize located?

Where did bocci originate?

TREC-8: 21 TREC-9: 71

Who

Who is the leader of India?

Who was Whitcomb Judson?

TREC-8: 28 TREC-9: 53

WhoRole

Who invented the electric guitar?

Who killed Martin Luther King?

TREC-8: 20 TREC-9: 62

Why

Why can't ostriches fly?

Why is Jane Goodall famous?

TREC-8: 2 TREC-9: 2

Bad

Questions which received no analysis from NLPWin, or a fragmentary one.

TREC-8: 5 TREC-9: 6

Unknown

Other questions, not covered by any of the above classes.

TREC-8: 2 TREC-9: 39

Bibliography

Belnap, Nuel D. and T. D. Steel (1976). Logic of questions and answers. New Haven.

Bolc, Leonard (ed.) (1980). Natural language question answering systems. Macmillan.

Braden-Harder, Lisa, Simon Corston, Bill Dolan and Lucy Vanderwende (1998). Using natural language processing to improve precision in information retrieval. Microsoft internal.

Elworthy, David, Tony Rose, Amanda Clare and Aaron Kotcheff (in press). A natural-language system for information retrieval. To appear in Natural Language Engineering.

Kiefer, Ferenc (ed.) (1983). Questions and answers. Reidel.

Lehnert, Wendy G. (1978). The process of question-answering: a computer simulation of cognition. Erlbaum.

Molla Aliod, Diego, Jawad Berri and Michael Hess (2000). A real-world implementation of answer extraction. Proc. of 9th International Conference and Workshop on Database and Expert Systems. Workshop "Natural Language and Information Systems" (NLIS'98).
Stephen D. Richardson, William B. Dolan and Lucy Vanderwende (1998). MindNet: Acquiring and Structuring Semantic Information from Text. Microsoft technical report TR-98-23.

Sleator, Daniel D. K. and Davy Temperley (1991). Parsing English with a link grammar. CMU Technical report.

Voorhees, Ellen and Dawn Tice (1999). The TREC-8 question-answering track. Proceedings of the 8th Text Retrieval Conference.

� Largely on the grounds of the time which was available for development, and the fact that such an approach can be developed and improved incrementally.

� The specific version of NLPWin was the eng_buf version with Gtran timestamp 06/22/00 21:03:00 and Gtran version 3.36.5.1507. Some of these problems can be avoided using more recent versions of NLPWin, alternative parameter settings in NLPWin, or restoring NLPWin to a global state on an error.

� This section and the following one have been updated from the draft version to include the official TREC-9 evaluation figures rather than my own estimates of accuracy.

Copyright ©1999
Microsoft® Research Limited
DAHE

All rights reserved
St. George House, 1 Guildhall St., Cambridge, U.K.
Tel.: 01223 744 744

_1029738801

_1032328090

_1032328850

_1029738854

_1029649788.unknown

